Bimodal regime in young massive clusters leading to formation of subsequent stellar generations

Richard Wünsch
J. Palouš, G. Tenorio-Tagle, C. Muñoz-Tuñón, S. Ehlerová

Astronomical institute, Czech Academy of Sciences

14th August 2015
Motivation: Cooling winds → multiple populations

- young massive clusters have winds
 - stellar winds, SNe → collisions → hot shocked wind → outflow
- the wind may become thermally unstable inside the cluster
 - if the cluster is massive and compact enough
- dense warm/cold clumps are formed
 - depends whether they can self-shield against ionising stellar radiation
- new stars form either in-situ or after clumps sink into the centre
 - 2nd generation (2G) stars enriched by products of massive stars chemical evolution
 - similarities with FRMS scenario (desressin+07)
 - even fast winds can be captured
 - predicts formation of 2G stars in the centre (may help with mass budget problem)
Motivation: Cooling winds → multiple populations

- young massive clusters have winds
 - stellar winds, SNe → collisions → hot shocked wind → outflow
- the wind may become thermally unstable inside the cluster
 - if the cluster is massive and compact enough
- dense warm/cold clumps are formed
 - depends whether they can self-shield against ionising stellar radiation
- new stars form either in-situ or after clumps sink into the centre
 - 2nd generation (2G) stars enriched by products of massive stars chemical evolution
 - similarities with FRMS scenario (desressin+07)
 - even fast winds can be captured
 - predicts formation of 2G stars in the centre (may help with mass budget problem)
Motivation: Cooling winds → multiple populations

- young massive clusters have winds
 stellar winds, SNe → collisions → hot shocked wind → outflow

- the wind may become thermally unstable inside the cluster
 if the cluster is massive and compact enough

- dense warm/cold clumps are formed
 depends whether they can self-shield against ionising stellar radiation

- new stars form either in-situ or after clumps sink into the centre

 2nd generation (2G) stars enriched by products of massive stars chemical evolution
 similarities with FRMS scenario (desressin+07)
 - even fast winds can be captured
 predicts formation of 2G stars in the centre (may help with mass budget problem)
Motivation: Cooling winds → multiple populations

- young massive clusters have winds
 stellar winds, SNe → collisions → hot shocked wind → outflow
- the wind may become thermally unstable inside the cluster
 if the cluster is massive and compact enough
- dense warm/cold clumps are formed
 depends whether they can self-shield against ionising stellar radiation
- new stars form either in-situ or after clumps sink into the centre
 2nd generation (2G) stars enriched by products of massive stars chemical evolution
 similarities with FRMS scenario (desressin+07)
 - even fast winds can be captured
 predicts formation of 2G stars in the centre (may help with mass budget problem)
The cluster wind

Star cluster wind: semi-analytical model

- by Chevalier & Clegg (1985, Nat., 317, 44)
- E_{kin} of stellar winds and SN ejecta thermalized, hot gas fills the cluster
- sources (stars) distributed according to top-hat profile
- solution of 1D spherically sym. HD equations, cooling neglected
- sonic point at the cluster border
- tested by Cantó+00, Raga+01 and others for stellar winds
- interaction of the wind with the parental cloud not covered here
 (harper-clark&murray09, krause+12,14, rogers&pittard13, rosen+14, herrera+, ...)

\[
\frac{1}{r^2} \frac{d}{dr} \left(\rho u r^2 \right) = q
\]

\[
\rho u \frac{d}{dr} \left(\frac{1}{2} u^2 + \frac{\gamma}{\gamma - 1} \frac{P}{\rho} \right) = Q
\]
Star cluster wind: semi-analytical model

- by Chevalier & Clegg (1985, Nat., 317, 44)
- E_{kin} of stellar winds and SN ejecta thermalized, hot gas fills the cluster
- sources (stars) distributed according to top-hat profile
- solution of 1D spherically sym. HD equations, cooling neglected
- sonic point at the cluster border

- tested by Cantó+00, Raga+01 and others for stellar winds
- interaction of the wind with the parental cloud not covered here

(harper-clark&murray09, krause+12,14, rogers&pittard13, rosen+14, herrera+, ...)

\[
\frac{1}{r^2} \frac{d}{dr} (\rho u r^2) = q
\]

\[
\rho u \frac{du}{dr} = \frac{dP}{dr} - q u
\]

\[
\frac{1}{r^2} \frac{d}{dr} \left[\rho u r^2 \left(\frac{1}{2} u^2 + \frac{\gamma}{\gamma - 1} \frac{P}{\rho} \right) \right] = Q
\]
Star cluster wind: semi-analytical model

- by Chevalier & Clegg (1985, Nat., 317, 44)
- E_{kin} of stellar winds and SN ejecta thermalized, hot gas fills the cluster
- sources (stars) distributed according to top-hat profile
- solution of 1D spherically sym. HD equations, cooling neglected
- sonic point at the cluster border
- tested by Cantó+00, Raga+01 and others for stellar winds
- interaction of the wind with the parental cloud not covered here
 (harper-clark&murray09, krause+12,14, rogers&pittard13, rosen+14, herrera+, ...)

\[
\frac{1}{r^2} \frac{d}{dr} \left(\rho u r^2 \right) = q
\]

\[
\rho u \frac{du}{dr} = \frac{dP}{dr} - qu
\]

\[
\frac{1}{r^2} \frac{d}{dr} \left[\rho u r^2 \left(\frac{1}{2} u^2 + \frac{\gamma}{\gamma - 1} \frac{P}{\rho} \right) \right] = Q
\]
Star cluster wind: semi-analytical model

- by Chevalier & Clegg (1985, Nat., 317, 44)
- E_{kin} of stellar winds and SN ejecta thermalized, hot gas fills the cluster
- sources (stars) distributed according to top-hat profile
- solution of 1D spherically sym. HD equations, cooling neglected
- sonic point at the cluster border
- tested by Cantó+00, Raga+01 and others for stellar winds
- interaction of the wind with the parental cloud not covered here
 (harper-clark&murray09, krause+12,14, rogers&pittard13, rosen+14, herrera+, ...)
Catastrophic cooling of the wind

- for massive clusters, cooling has to be taken into account
- radiative solution by silich+03 → T drops at a certain radius
- predicts different observed X-ray flux (silich+04) - good agreement with observed X-ray fluxes (NGC4303 nuclear SSC; jiménez-bailón+03)

above certain mass limit, no stationary wind solution exists → catastrophic cooling (silich+03):

\[
\begin{align*}
\text{energy deposition} & \propto M_{\text{SC}} \\
\text{cooling} & \propto \rho_{\text{wind}}^2 \propto M_{\text{SC}}^2 \Rightarrow \text{inevitable}
\end{align*}
\]

- tenorio-tagle+05 suggests extreme positive feedback (high SFE)
Catastrophic cooling of the wind

- for massive clusters, cooling has to be taken into account
- radiative solution by silich+03 \rightarrow T drops at a certain radius
- predicts different observed X-ray flux (silich+04) - good agreement with observed X-ray fluxes (NGC4303 nuclear SSC; jiménez-bailón+03)

- above certain mass limit, no stationary wind solution exists \rightarrow catastrophic cooling (silich+03):
 - energy deposition $\propto M_{SC}$
 - cooling $\propto \rho_{wind}^2 \propto M_{SC}^2$
 \Rightarrow inevitable

- tenorio-tagle+05 suggests extreme positive feedback (high SFE)
Three wind regimes

- quasi-adiabatic regime
 - identical with CC85, cooling has no effect
 - mechanical luminosity (cluster mass) substantially below L_{crit}

3 parameters: L_{SC}, \dot{M}_{SC}, R_{SC}
given by M_{SC}

- Quasi-adiabatic

- Thermalization

- Velocity $v_{\infty} = \sqrt{\frac{2L_{\text{SC}}}{M_{\text{SC}}}}$

- Sound speed v_{s}

- Density

- Temperature
Three wind regimes

- radiative regime
 - mechanical luminosity (cluster mass) slightly below L_{crit}
 - wind cools down at certain distance out of the cluster
Bimodal regime

Three wind regimes

- **bimodal regime** (tenorio-tagle+07; wünsch+08), cluster split by R_{st}
 - outer: wind, stationary solution exists
 - inner: thermal instabilities, mass accumulation - secondary SF

3 parameters: L_{SC}, \dot{M}_{SC}, R_{SC} given by M_{SC}

![Diagram showing bimodal regime with parameters and variables](image)
Heating efficiency and mass loading

- hot gas inside cluster seems to be colder than energy / mass deposited by stars → two new parameters:
 - η_{ML}: mass loading - additional (pristine) gas added to the hot phase
 - η_{HE}: heating efficiency - some thermal energy is lost from the hot phase (on the top of standard cooling)
- mass loading - evidence for mixing with pristine gas $\sim 1 : 1$
 (e.g. prantzos+07)
Heating efficiency and mass loading

- Hot gas inside cluster seems to be colder than energy/mass deposited by stars → two new parameters:
 - η_{ML}: mass loading - additional (pristine) gas added to the hot phase
 - η_{HE}: heating efficiency - some thermal energy is lost from the hot phase (on the top of standard cooling)
- Mass loading - evidence for mixing with pristine gas $\sim 1 : 1$ (e.g. prantzos+07)
Heating efficiency and mass loading

- hot gas inside cluster seems to be colder than energy / mass deposited by stars \rightarrow two new parameters:
 - η_{ML}: mass loading - additional (pristine) gas added to the hot phase
 - η_{HE}: heating efficiency - some thermal energy is lost from the hot phase (on the top of standard cooling)
- mass loading - evidence for mixing with pristine gas $\sim 1:1$ (e.g. prantzos+07)

- obs. evidence for low heating efficiency
 - missing energy from X-ray luminosities (rosen+14)
 - recombination line profiles of SSCs in Antennae have moderately supersonic widths (gilbert&graham07)
HII region coinciding with SSCs in M82 are very compact (silich+09)

evidence for high heating efficiency in M82 defined globally: $\eta_{\text{HE}} = 30 - 100\%$, strickland&heckman09)
HII region coinciding with SSCs in M82 are very compact (silich+09)

evidence for high heating efficiency in M82
defined globally: $\eta_{HE} = 30 - 100\%$, strickland&heckman09)
Evolution of Massive Compact Clusters (wünsch+11)

- evolution of the critical luminosity (L_{crit}) for $10^7 M_\odot$ cluster with $R_{\text{SC}} = 3$ pc
- Starburst99 with Geneva evolutionary tracks (HighMass winds)
Influence of ionising radiation

Analytical estimate (palouš+14)

- **dense warm gas sinks into centre: stream + central clump**
- **self-shielding mass of the central clump**
 \[
 m_{\text{self}} = \dot{N}_{UV,SC} \frac{\mu m_H}{\alpha^*} \frac{kT_{\text{ion}}}{P_{\text{hot}}}
 \]
- **can streams of falling mass cool before they fall into centre?**
 \[
 t_{SS} = \frac{1}{4} \pi q_{UV}^2 R_{SC}^5 R_{st}^{-2} (1 + \eta_{ml})^{-1} \dot{M}_{SC}^{-1} \mu m_H \alpha^*^{-2} \left(\frac{kT}{P_{\text{hot}}} \right)^3.
 \]
Influence of ionising radiation

Analytical estimate (palouš+14)

- dense warm gas sinks into centre: stream + central clump
- self-shielding mass of the central clump
 \[m_{\text{self}} = \dot{N}_{\text{UV,SC}} \frac{\mu_m H}{\alpha_*} \frac{kT_{\text{ion}}}{P_{\text{hot}}} \]
- can streams of falling mass cool before they fall into centre?
 \[t_{SS} = \frac{1}{4} \pi q_{UV} R_{SC}^5 R_{st}^{-2} (1 + \eta_{\text{ml}})^{-1} \dot{M}_{\text{SC}}^{-1} \mu_m H \alpha_*^{-2} \left(\frac{kT}{P_{\text{hot}}} \right)^3. \]
Influence of ionising radiation

Analytical estimate (palouš+14)

- dense warm gas sinks into centre: stream + central clump
- self-shielding mass of the central clump
 \[m_{\text{self}} = \dot{N}_{\text{UV,SC}} \frac{\mu m_H}{\alpha_*} \frac{k T_{\text{ion}}}{P_{\text{hot}}} \]
- can streams of falling mass cool before they fall into centre?
 \[t_{SS} = \frac{1}{4} \pi q_{\text{UV}}^2 R_{SC}^5 R_{st}^{-2} (1 + \eta ml)^{-1} \dot{M}_{SC}^{-1} \mu m_H \alpha_*^{-2} \left(\frac{k T}{P_{\text{hot}}} \right)^3. \]

RHD simulations:

- radiation treated by TreeRay: tree + reverse ray-tracing; wünsch+(in prep.)
RHD simulation

- AMR code Flash
- 128^3 grid
- M&E src: Schuster distribution
- optically thin cooling: raymond+76
- fixed stellar gravity
- self-gravity: tree code (wünsch+15)
- heating by ionising radiation: TreeRay
Evolution of accumulated mass

\(M_{sc} = 10^7 \, M_{\text{Sun}} \), \(\beta = 1.5 \), \(R_h = 2.38 \, \text{pc} \), \(\eta_{HE} = 0.05 \), \(\eta_{ML} = 1.0 \)

First supernova
total mass inserted
sinks+gas
sinks
gas
windcal
Evolution of accumulated mass

Mass budget at 3.5 Myr:
- 1G stellar mass: $10^7 \, M_\odot$
- inserted by winds: $4 \times 10^5 \, M_\odot$
- mass loaded: $4 \times 10^5 \, M_\odot$
- 2G stellar mass: $7 \times 10^5 \, M_\odot$
 \(\rightarrow\) very compact, in the centre
 \(\rightarrow\) should stay in the cluster during 1G tidal removal (khalaj&baumgardt15)
- remains in dense phase: 14000 M_\odot
 \(\rightarrow\) rapidly removed by SNe
Parameter space study

- Bimodal regime
- Simulations

- Log accumulated mass [M$_{\text{Sun}}$]
- η$_{ml}$
- η$_{he}$

- bimodal but no self-shielding
- extended 2G
- compact 2G
- not bimodal
Summary

- Wind cooling leading to bimodal regime is inevitable for high and compact enough cluster.
- Dense gas formed by thermal instability stays in the cluster and self-shields against ionising radiation → secondary SF.
- Heating efficiency ⇒ compact/extended 2G:
 - Low heating efficiency → SF in the central clump: 2G concentrated in the cluster centre;
 - High heating efficiency → SF in streams: 2G dispersed throughout the cluster.
- Much more difficult to capture SN ejecta; rapidly remove remaining accumulated gas.
Summary

- Wind cooling leading to bimodal regime is inevitable for high and compact enough cluster.
- Dense gas formed by thermal instability stays in the cluster and self-shields against ionising radiation \rightarrow secondary SF.
- Heating efficiency \Rightarrow compact/extended 2G:
 - Low heating efficiency \rightarrow SF in the central clump: 2G concentrated in the cluster centre;
 - High heating efficiency \rightarrow SF in streams: 2G dispersed throughout the cluster.
- Much more difficult to capture SN ejecta; rapidly remove remaining accumulated gas.
Summary

- Wind cooling leading to bimodal regime is inevitable for high and compact enough cluster.
- Dense gas formed by thermal instability stays in the cluster and self-shields against ionising radiation → secondary SF.
- Heating efficiency ⇒ compact/extended 2G.
 - Low heating efficiency → SF in the central clump: 2G concentrated in the cluster centre;
 - High heating efficiency → SF in streams: 2G dispersed throughout the cluster.
- Much more difficult to capture SN ejecta; rapidly remove remaining accumulated gas.
wind cooling leading to bimodal regime is inevitable for high and compact enough cluster

dense gas formed by thermal instability stays in the cluster and self-shields against ionising radiation → secondary SF

heating efficiency ⇒ compact/extended 2G
- low heating efficiency → SF in the central clump: 2G concentrated in the cluster centre;
- high heating efficiency → SF in streams: 2G dispersed throughout the cluster

much more difficult to capture SN ejecta; rapidly remove remaining accumulated gas
Thank you!