Physical properties and evolution of GMCs in the Galaxy and the Magellanic Clouds

Toshikazu Onishi (Osaka Prefecture University)
R. Harada, Y. Morioka, K. Tokuda (OPU), Y. Fukui, K. Torii (Nagoya Univ.), A. Kawamuwa, K. Saigo (NAOJ),
M. Meixner (STScI), M. Sewiło, O. Nayak (J. Hopkins Univ.), R. Indebetouw (Univ. of Virginia), and many others

ALMA Image: N159W
GMC as a site of high-mass star formation

From galaxy evolution to individual star formation

kpc

1-100pc

GMCs: $10^4 - 10^6$ Mo
$n(H_2) \sim 1000$ cm$^{-3}$

Wide range of scales
Various distances
Use of various telescopes

Clumps, Cores
$10^2 - 10^3$ Mo
$n(H_2) \sim >10^4$ cm$^{-3}$

$<\sim 1$ pc

GMAs: 10^7 Mo
Star formation in GMCs

★ Most stars form in GMCs
 ✧ K-S law: Gas surface density – SF activities
 - Gas → SF is a “key” to understand the galaxy’s evolution
★ Key issue for galaxy evolution
 ✧ GMC properties in the MW as templates
 - Some scaling relations (e.g., Solomon et al. 1987)
 - The samples are biased to the nearby GMC?
 ✧ Not a representative for the MW?
 ✧ Magellanic Clouds + some local galaxies
 - Recent high resolution observations + “Uniform” sample
 ✧ Uniform sample of high mass formation from GMC scale down to core scale
 - bridging between MW GMCs and distant galaxies
High mass SF

- Initial condition
 - Need high Jeans mass (effective $a \sim 10\text{km/s}$)
 - Monolithic collapse? (McKee and Tan 2002)
 - Competitive mass accretion? (Bonnel et al. 2010)
 - Origin of IMF
 - Effect of the total mass of the cloud?
 - Origin of isolated high mass star: 20%? (Gies 1987)

- Rapid destructive process
 - Information on natal clouds dissipates very fast.
Galactic plane surveys

- Sites of high-mass star formation in the Galaxy.
- CO, 13CO, C18O, J=1-0: Mass tracers
- J=2-1, 3-2 lines: Density, temperature dependent

- Angular resolution: 3 arcmin
 - NANTEN2 4m: 12CO(1-0), 13CO(1-0), Entire Southern Sky
 - Osaka 1.85m at NRO: 12CO(2-1), 13CO(2-1), C18O(2-1), Northern sky
- Angular resolution: better than ~1’
 - FCRAO 14m: 13CO(1-0), 55.7°>L>18°, |b|<1°
 - Mopra 22m: 12CO(1-0), 13CO(1-0), C18O(1-0), 358°>L>300°, |b|<0.5°
 - JCMT 15m: 12CO(3-2), 13CO(3-2), C18O(3-2), 43°>L>28°, |b|<0.5°
 - NRO 45m: 12CO(1-0), 13CO(1-0), C18O(1-0), 50°>L>10°, 236°>L>198°, |b|<1°
Interaction of clouds: Cloud-Cloud collision

- Multiple velocity components are frequently seen toward high-mass star forming regions
 - Dynamics of gas is a key for high-mass star formation
- Increase Jeans mass, compression of gas
- Frequency?
 - can be large
 - No. of GMCs $\sim 10^5$ (Kwan 1979)
 - Mean free time $\sim 10^{\text{Myr}}$: one collision within its lifetime
- Small scale (dense clumps) collision
Massive star cluster formation by CCC

- All of the known four young massive star clusters (MSC) having nebulosity are each associated with two clouds.
- The velocity separations between two clouds are typically 10–20 km/s.
- MSC formation by CCC.
- Time scale of CCC and MSC formation can be estimated as < ~0.5 Myrs.
NGC3603 star formation is quick, in 10^5 yrs

Fukui et al. 2014

Kudryavtseva et al. 2012

Figure 4. Normalized $L(t)$ for NGC 3603 YC at DM = 14.1 mag. The most probable age is 2.0 Myr. The red curve is a fitted Gaussian function.
Massive star formation by cloud-cloud collision

Cloud-cloud collision (CCC) can induce strong compression of the gas, leading high-mass star formation.

Theoretical work:
- CCC can increase mass accretion rate by more than 100 times than that in the low-mass star formation → leading formation of massive clump/core.

\[
\dot{M} \sim \frac{M_{J,\text{eff}}}{t_{ff}} \sim \frac{(c_s^3 + c_A^3 + \Delta v^3)}{G} \quad (c_s^3 : c_A^3 : \Delta v^3 = 1 : 125 : 90)
\]

\[
M = 5 \times 10^{-4} - 4 \times 10^{-3} \quad M_{\text{Sun/yr}}
\]
Sites of the massive star formation by CCC

- Single O star formation
 - M20
 - Spitzer bubbles (RCW120, RCW145, etc.)
 - UCHII region (Poster by A. Ohama: S316.p94)
- Galactic mini-starbursts
 - NGC6334+NGC6357 (Poster by K. Torii)
 - W49 (Kiridoshi+2015, in prep.)
Galactic plane surveys

- Sites of high-mass star formation in the Galaxy.
- CO, 13CO, C$_18$O, J=1-0: Mass tracers
- J=2-1, 3-2 lines: mass, density, temperature dependent
- Detecting distant GMCs at >10kpc

Angular resolution: 3 arcmin

- NANTEN2 4m: 12CO(1-0), 13CO(1-0), Entire Southern Sky
- Osaka 1.85m at NRO: 12CO(2-1), 13CO(2-1), C$_{18}$O(2-1), Northern sky

Angular resolution: better than ~1'

- FCRAO 14m: 13CO(1-0), $L>18\,\trumillion\,M_{\odot}$, |b|<1
- Mopra 22m: 12CO(1-0), 13CO(1-0), C$_{18}$O(1-0), $L>300\,\trumillion\,M_{\odot}$, |b|<0.5°
- JCMT 15m: 12CO(3-2), $L>28\,\trumillion\,M_{\odot}$, |b|<0.5°
- NRO 45m: 12CO(1-0), $L>198\,\trumillion\,M_{\odot}$, |b|<1°, r=3kpc, r=10kpc
Galactic plane surveys

- Sites of high-mass star formation in the Galaxy.
- CO, 13CO, C18O, J=1-0: Mass tracers
- J=2-1, 3-2 lines: mass, density, temperature dependent
- Detecting distant GMCs at >10kpc

- Angular resolution: 3 arcmin
 - NANTEN2 4m: 12CO(1-0), 13CO(1-0), Entire Southern Sky
 - Osaka 1.85m at NRO: 12CO(2-1), 13CO(2-1), C18O(2-1), Northern sky
- Angular resolution: better than ~1’
 - FCRAO 14m: 13CO(1-0), 55.7°>L>18°, |b|<1°
 - Mopra 22m: 12CO(1-0), 13CO(1-0), C18O(1-0), 358°>L>300°, |b|<0.5°
 - JCMT 15m: 12CO(3-2), 13CO(3-2), C18O(3-2), 43°>L>28°, |b|<0.5°
 - NRO 45m: 12CO(1-0), 13CO(1-0), C18O(1-0), 50°>L>10°, 236°>L>198°, |b|<1°
NRO Galactic Plane Survey

- Using multi-beam receiver FOREST, OTF mapping of the Galactic plane in $^{12}\text{CO}(1-0)$, $^{13}\text{CO}(1-0)$, $^{C^{18}}\text{O}(1-0)$, simultaneously

Mapping area:
- **inner disk**: $l = 10^\circ \sim 50^\circ$ \ $|b| \leq 1^\circ$
 - Spiral arms, interarm, bar/barend
- **outer disk**: $l = 198^\circ \sim 236^\circ$ \ $|b| \leq 1^\circ$
 - Comparison with inner disk
CO three lines

R $^{12}\text{CO}(1-0)$, G $^{13}\text{CO}(1-0)$, B $^{18}\text{O}(1-0)$

~JCMT CO(3-2) resolutions
Survey with <20" resolutions

★ NRO (J=1-0), IRAM (J=2-1), JCMT (J=3-2)
★ Spatial resolution
 ✥ 0.3pc at 3kpc
 - Can spatially resolve dense cores
 ✥ 1pc at 10kpc
 - Can detect dense cores
★ Velocity structures of Herschel and Spitzer distribution
★ Essential to investigate the nature of the GMCs in the entire Galaxy
Initial condition for Massive SF

- Collision/Interaction process can be one of the main cause of massive stars
 - Line observations are important
- Severe contamination in the Galactic plane
 - Large errors in distance determination

- Extragalactic observations
 - Less contamination, same distances in a galaxy
- Distribution of extended emission
 - ALMA + ACA (Morita array)
Magellanic Clouds

- D~ 50 kpc (one of the nearest)
- Different environment from the MW.
 - High gas-dust ratio
 - Low metallicity
- Active star formation
 - Massive star formation
 - Young populous clusters

The Large Magellanic Cloud

The Small Magellanic Cloud
Examples of Large scale observations

Spitzer survey of the LMC
SAGE: Surveying the Agency of the galaxy’s evolution
(Meixner et al. 2006)

GMCs, dust, YSOs, HII regions, SNRs, AGBs, ...

CO: from 1.2 Kkm/s 1.2Kkm/s intervals
(Fukui et al. 2008)
GMCs & high mass star formation activities in the LMC with ~ 40 pc resolution

- 44 clouds (26%) associated with 82 clusters over a time scale of 7Myr
- 88 clouds (51%) associated with 55 clusters over a time scale of 14Myr
- 39 clouds (23%) associated with 82 clusters over a time scale of 6Myr
- 55 clusters over a time scale of 4Myr

Kawamura et al. (2009)
\[2.7 \text{arcmin} = 40 \text{pc} \]
N159

- One of the largest
 Mass: 10^7 Mo
 Size: 220 pc
 Has strongest CO emission
- Active star formation
 Five young clusters
 age < 10 Myr
 (Bica et al. 1996)

2.7 arcmin = 40 pc
N159

- One of the largest
 Mass: 10^7 Mo
 Size: 220 pc
 - Has strongest CO emission
- Active star formation
 - Five young clusters age < 10 Myr
 (Bica et al. 1996)

$2.7 \text{arcmin} = 40 \text{pc}$
N159: Most active on-going star formation in the Local Group: Resolving filaments and cloud cores in the LMC

Contour: ASTE 12CO(3-2), 22" = 5pc

Fukui [PI]
Yamamoto
Ohama
Onishi
Kawamura
Minamidani
Inbedetouw
Madden
Galametz
Lebouteiller
N.Mizuno
R.Chen
Seale
Sewio
Meixner

Y. Mizuno et al. 2010
ALMA 12CO(2-1) Integrated intensity [Jy/beam km/s]

ASTE 12CO(3-2) Integrated intensity [K km/s]

N159 W

1".2 \times 0".8 = 0.29 \times 0.19 pc beam size

22" = 5 pc
Outflow from massive YSO

\[\text{13CO}(2-1) \]

Image: Continuum
Red, Blue: Outflow

Blue Component

Red Component
13CO(2-1)

Outflow from massive YSO

Image: Continuum
Blue: Outflow

Blue Component

Graph showing velocity vs. intensity.
Massive star formation by cloud-cloud collisions

3-D MHD simulation with self-gravity of colliding clouds
Inoue & Fukui 2013

Large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer
Star formation in N159W [ALMA cycle1]

- Colliding (Merging?) filaments
 - Width: 1pc
 - Velocity difference: 2-5 km/s
 - Total velocity width: ~ 8km/s
 - Time scale: 6 x 10^4yrs

- Massive YSOs at the intersection
 - Outflow: Mass is infalling (~10^4yrs)
 - Mass accretion rate: 37Mo/6 x 10^4yrs=6x10^{-4}Mo/yr
 - Radio recombination lines: No
 - Massive stars are formed rapidly after the collision

Fukui et al. (2015)
N159: Most active on-going star formation in the Local Group: Resolving filaments and cloud cores in the LMC

Contour: ASTE 12CO(3-2), 22" = 5pc

Y. Mizuno et al. 2010
N159E

12CO(2-1)

Papillon nebula
(Compact HII region: 50Mo star?)
N159 East Papillon

Black Contour: 12CO(2-1)
White Contour: 98GHz Continuum (free-free)
Magenta Contour: H30α

White Contour: 12CO(2-1)
Yellow dashed Contour: 231GHz Continuum (thermal)
Three velocity components?

Blue: 228km/s - 232km/s
Green: 232km/s - 334km/s
Red: 235km/s - 240km/s

Filaments are merging at Papillon
CO gas is rapidly dissociated by the high-mass star
Similar, but more complex velocity structure compared with the N159W filaments
ALMA observations
N159 in the LMC

- Full of Filaments and Arcs
 - Complex velocity structures
- Molecular outflows
 - Dust continuum/Radio Recombination Lines
- Some filaments are colliding/merging
 - Leading to rapid high-mass star formation

Outflow
37Mo YSO
High-mass star formation: Orion in the Galaxy/N159 in LMC

- Size-scale: similar
- Multiple velocity components
 - $dv \sim 10\text{km/s}$
 - Mostly filaments
- Collision process can be one of the main causes of massive stars
- Much higher column density in N159
 - More active star formation in the LMC?
High mass SF in GMC

- Resolved CO observations toward GMCs
 - from nearby GMCs to GMCs in the LMC
 - from small telescopes to ALMA
 - a lot of samples with resolutions of a few x 0.1pc
 - along the galactic plane and in the LMC
 - Dynamical interaction of the gas is a key to understand the high mass star formation.
ALMA Image: N159W
Massive YSOs (~30Mo)